Quantum Computation Based Probability Density Function Estimation

نویسندگان

  • Ferenc Balázs
  • Sándor Imre
چکیده

Signal processing techniques will lean on blind methods in the near future, where no redundant, resource allocating information will be transmitted through the channel. To achieve a proper decision, however, it is essential to know at least the probability density function (pdf), which to estimate is classically a time consumpting and/or less accurate hard task, that may make decisions to fail. This paper describes the design of a quantum assisted pdf estimation method also by an example, which promises to achieve the exact pdf by proper setting of parameters in a very fast way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables

Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.

متن کامل

Wavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses

We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...

متن کامل

Comparison of the Gamma kernel and the orthogonal series methods of density estimation

The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...

متن کامل

Kernel-based classification using quantum mechanics

This paper introduces a new nonparametric estimation approach inspired from quantum mechanics. Kernel density estimation associates a function to each data sample. In classical kernel estimation theory the probability density function is calculated by summing up all the kernels. The proposed approach assumes that each data sample is associated with a quantum physics particle that has a radial a...

متن کامل

فشرده سازی اطلاعات متغیر با زمان با استفاده از کد هافمن

Abstract: In this paper, we fit a function on probability density curve representing an information stream using artificial neural network . This methodology result is a specific function which represent a memorize able probability density curve . we then use the resulting function for information compression by Huffman algorithm . the difference between the proposed me then with the general me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004